OSE SEMINAR 2012

Two approaches to underestimating quadratic functions

Anders Skjäl

CENTER OF EXCELLENCE IN
OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, NOVEMBER 292012

The Application

A nonconvex mathematical programming problem:

$$
\begin{array}{lll}
\min & f_{0}(x) & \\
\text { s.t. } & f_{m}(x) \leq 0 & i=1,2, \ldots, M \\
& x^{L} \leq x \leq x^{U} &
\end{array}
$$

The Application

A nonconvex mathematical programming problem:

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{m}(x) \leq 0
\end{array} \quad i=1,2, \ldots, M
$$

Many global optimization algorithms use convex underestimation

- branch-and-bound methods
- lower bounds or proof of infeasibility

A Comparison

I will describe two underestimation methods:
\Rightarrow An $\alpha \mathrm{BB}$ variant (Skjäl and Westerlund, 2012)
\triangleright smooth $\left(\mathcal{C}^{2}\right)$ functions
\triangleright perturbations

A Comparison

I will describe two underestimation methods:
$>$ An $\alpha \mathrm{BB}$ variant (Skjäl and Westerlund, 2012)
\triangleright smooth $\left(\mathcal{C}^{2}\right)$ functions
\triangleright perturbations

- An underestimation method with roots in algebraic geometry (Jean B. Lasserre and Tung Phan Thanh, 2012)
\triangleright polynomials
\triangleright underestimator of a specified degree

$\alpha \mathrm{BB}$

Perturbations

- All $\alpha \mathrm{BB}$ methods use perturbations
$\Rightarrow-\alpha_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)$

Perturbations

- All $\alpha \mathrm{BB}$ methods use perturbations
$>-\alpha_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)$
$\Rightarrow \beta_{i j} x_{i} x_{j}-\operatorname{conc}\left(\beta_{i j} x_{i} x_{j}\right)$

Perturbations

- All $\alpha \mathrm{BB}$ methods use perturbations
$>-\alpha_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)$
$\Rightarrow \beta_{i j} x_{i} x_{j}-\operatorname{conc}\left(\beta_{i j} x_{i} x_{j}\right)$
- underestimation: ok
- convexity: use a sufficient condition for positive semidefiniteness
$\nabla^{2} f(x)+H^{P} \geq 0, \forall x \in\left[x^{L}, x^{U}\right]$

Parameter Calculation

- Adjiman, Dallwig, Floudas \&

Neumaier, 1998
\triangleright diagonal

- many calculation methods (e.g. "Gerschgorin")

Parameter Calculation

- Adjiman, Dallwig, Floudas \&

Neumaier, 1998
\triangleright diagonal

- many calculation methods (e.g. "Gerschgorin")
- Skjäl \& Westerlund, manuscript
- additional methods, nondiagonal

(maximum error)

Parameter Calculation

- Adjiman, Dallwig, Floudas \& Neumaier, 1998
\triangleright diagonal
- many calculation methods (e.g. "Gerschgorin")
- Skjäl \& Westerlund, manuscript
- additional methods, nondiagonal
- The scaled diagonal Gerschgorin method is recommended for general

Quadratic Functions

- Quadratic functions have constant second derivatives
- No need for interval approximations
- Convexity of the perturbed function is equivalent to

$$
H+H^{P}=H+\left[\begin{array}{cccc}
2 \alpha_{1} & \beta_{1,2} & \cdots & \beta_{1, n} \\
\beta_{1,2} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \beta_{n-1, n} \\
\beta_{1, n} & \cdots & \beta_{n-1, n} & 2 \alpha_{n}
\end{array}\right] \geq 0
$$

Quadratic Functions

- Quadratic functions have constant second derivatives
- No need for interval approximations
- Convexity of the perturbed function is equivalent to

$$
H+H^{P}=H+\left[\begin{array}{cccc}
2 \alpha_{1} & \beta_{1,2} & \cdots & \beta_{1, n} \\
\beta_{1,2} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \beta_{n-1, n} \\
\beta_{1, n} & \cdots & \beta_{n-1, n} & 2 \alpha_{n}
\end{array}\right] \geq 0
$$

- The best perturbation(s) minimize some error measure
Δ in literature: the maximum underestimation error
- a new choice: the average error

Error Measures

- Maximum underestimation error (L^{∞}-norm)

$$
\sum_{i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)^{2} \alpha_{i}+\sum_{i} \sum_{j>i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)\left|\beta_{i j}\right|
$$

Error Measures

- Maximum underestimation error (L^{∞}-norm)

$$
\sum_{i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)^{2} \alpha_{i}+\sum_{i} \sum_{j>i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)\left|\beta_{i j}\right|
$$

- Average error (normalized L^{1}-norm)
${ }^{-} \alpha_{i}$ weight

$$
\frac{\int_{\left.x^{L}, x^{U}\right]}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right) \mathrm{d} x}{\int_{\left[x^{L}, x^{U}\right]} \mathrm{d} x}=\frac{1}{6}\left(x_{i}^{U}-x_{i}^{L}\right)^{2}
$$

Error Measures

- Maximum underestimation error (L^{∞}-norm)

$$
\sum_{i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)^{2} \alpha_{i}+\sum_{i} \sum_{j>i} \frac{1}{4}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)\left|\beta_{i j}\right|
$$

- Average error (normalized L^{1}-norm)
${ }^{\prime} \alpha_{i}$ weight

$$
\frac{\int_{\left[x^{L}, x^{U}\right]}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right) \mathrm{d} x}{\int_{\left[x^{L}, x^{U}\right]} \mathrm{d} x}=\frac{1}{6}\left(x_{i}^{U}-x_{i}^{L}\right)^{2}
$$

$\triangleright\left|\beta_{i j}\right|$ weight, symbolical integration with Mathematica

$$
\frac{1}{12}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)
$$

Lasserre \& Thanh's Method

Positive Polynomials on \mathbb{R}^{n}

- If a function can be decomposed as a sum of squares it is nonnegative

$$
x^{2}-4 x y+5 y^{2}-2 y z+z^{2}=(x-2 y)^{2}+(y-z)^{2} \geq 0
$$

Positive Polynomials on \mathbb{R}^{n}

Hilbert's Seventeenth Problem

Can any nonnegative polynomial be represented as a sum of squares of rational functions?

- If a function can be decomposed as a sum of squares it is nonnegative

$$
x^{2}-4 x y+5 y^{2}-2 y z+z^{2}=(x-2 y)^{2}+(y-z)^{2} \geq 0
$$

Positive Polynomials on \mathbb{R}^{n}

Hilbert's Seventeenth Problem

Can any nonnegative polynomial be represented as a sum of squares of rational functions?

- If a function can be decomposed as a sum of squares it is nonnegative

$$
x^{2}-4 x y+5 y^{2}-2 y z+z^{2}=(x-2 y)^{2}+(y-z)^{2} \geq 0
$$

- Hilbert showed that a nonnegative polynomial is not in general a sum of squares of polynomials
- Motzkin gave the first example (1966)

$$
z^{6}+x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2} z^{2}
$$

Positive Polynomials on Semialgebraic Sets

- A set is called semialgebraic if it is described by polynomial inequalities

$$
\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

- Let \sum denote all sums of squares of polynomials in x; a convex cone

Positive Polynomials on Semialgebraic Sets

Putinar's Positivstellensatz

Let K be a compact semialgebraic set. Assume that $p_{1} \ldots p_{m}$ have even degrees and that their highest degree homogenous parts have no common zeroes in \mathbb{R}^{n}, except 0 . Then any positive polynomial p on K belongs to the cone $\Sigma+p_{1} \Sigma+\ldots+p_{m} \Sigma$.

- A set is called semialgebraic if it is described by polynomial inequalities

$$
\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

\Rightarrow Let Σ denote all sums of squares of polynomials in x; a convex cone

Underestimation and Convexity

- Lasserre and Thanh use the Positivstellensatz for both properties
\triangleright underestimation:

$$
f(x)-h(x) \geq 0, \quad \forall x \in\left[x^{L}, x^{U}\right]
$$

Underestimation and Convexity

- Lasserre and Thanh use the Positivstellensatz for both properties
\downarrow underestimation:

$$
f(x)-h(x) \geq 0, \quad \forall x \in\left[x^{L}, x^{U}\right]
$$

- convexity:

$$
y^{T} \nabla^{2} h(x) y \geq 0, \quad \forall x \in\left[x^{L}, x^{U}\right], \forall y \in \mathbb{R}^{n}:\|y\| \leq 1
$$

Underestimation and Convexity

- Lasserre and Thanh use the Positivstellensatz for both properties
\downarrow underestimation:

$$
f(x)-h(x) \geq 0, \quad \forall x \in\left[x^{L}, x^{U}\right]
$$

\triangleright convexity:

$$
y^{T} \nabla^{2} h(x) y \geq 0, \quad \forall x \in\left[x^{L}, x^{U}\right], \forall y \in \mathbb{R}^{n}:\|y\| \leq 1
$$

- the sets are compact semialgebraic

$$
\begin{gathered}
\left\{x \in \mathbb{R}^{n}:\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right) \geq 0, i=1, \ldots, n\right\} \\
\cap\left\{y \in \mathbb{R}^{n}: 1-\sum_{i} y_{i}^{2} \geq 0\right\}
\end{gathered}
$$

Finite-Dimensional Approximation

\Rightarrow The underestimator degree is fixed, $\operatorname{deg}(h)=d$

- The sum-of-squares cones are restricted

$$
\Sigma_{k}:=\{p \in \Sigma: \operatorname{deg}(p) \leq 2 k\}
$$

Finite-Dimensional Approximation

- The underestimator degree is fixed, $\operatorname{deg}(h)=d$
- The sum-of-squares cones are restricted

$$
\Sigma_{k}:=\{p \in \Sigma: \operatorname{deg}(p) \leq 2 k\}
$$

- Lasserre \& Thanh proved convergence properties as $k \rightarrow \infty$

Finite-Dimensional Approximation

- The underestimator degree is fixed, $\operatorname{deg}(h)=d$
- The sum-of-squares cones are restricted

$$
\Sigma_{k}:=\{p \in \Sigma: \operatorname{deg}(p) \leq 2 k\}
$$

- Lasserre \& Thanh proved convergence properties as $k \rightarrow \infty$
- Elements in Σ_{k} kan be represented as positive semidefinite matrices

$$
\begin{aligned}
& \begin{aligned}
(x-2 y)^{2}+(y-1)^{2} & =\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-2 & 1
\end{array}\right]
\end{aligned}\left[\begin{array}{ccc}
0 & 1 & -2 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right] \\
& \\
& =\left[\begin{array}{l}
1 \\
x \\
y
\end{array}\right]^{T} \underbrace{\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
-1 & -2 & 5
\end{array}\right]}_{\geq 0}\left[\begin{array}{c}
1 \\
x \\
y
\end{array}\right] \\
& \text { Anders Skjal: Two approaches to underestimating quadratic functions }
\end{aligned}
$$

Constraints

- The underestimation condition takes the form:

$$
\begin{aligned}
f(x)-h(x) & =\sigma_{0}(x)+\sum_{i=1}^{n} \sigma_{i}(x)\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right), \quad \forall x \\
\sigma_{0} & \in \Sigma_{k} \\
\sigma_{i} & \in \Sigma_{k-1}, i=1, \ldots, n
\end{aligned}
$$

Constraints

- The underestimation condition takes the form:

$$
\begin{aligned}
f(x)-h(x) & =\sigma_{0}(x)+\sum_{i=1}^{n} \sigma_{i}(x)\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right), \quad \forall x \\
\sigma_{0} & \in \Sigma_{k} \\
\sigma_{i} & \in \Sigma_{k-1}, i=1, \ldots, n
\end{aligned}
$$

- Rewritten in the monomial basis we get $\binom{n+2 k}{n}$ linear constraints

$$
f_{\alpha}-h_{\alpha}=\sum_{i=0}^{n}\left\langle z_{j}, C_{\alpha}^{j}\right\rangle
$$

involving $n+1$ semidefinite variable matrices

$$
z_{j} \geq 0, j=0,1, \ldots, n
$$

Example-1D

Example - 2D

Example-2D (detail)

$d=1$, average error $=19.8$

$d=2$, average error $=9.7$

L\&T, Quadratic Case

- Lasserre \& Thanh's constraints simplify when $\operatorname{deg}(f)=2, d=2, k=1$

$$
\begin{aligned}
f(\boldsymbol{x}) & -\left(b+\mathbf{a}^{\prime} \boldsymbol{x}+\boldsymbol{x}^{\prime} A \boldsymbol{x}\right)=\sum_{i=1}^{n} \sigma_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)+\left[\boldsymbol{x}^{\prime} 1\right] C\left[\boldsymbol{x}^{\prime} 1\right]^{\prime} \\
A & \geq 0, \quad C \geq 0 \\
\sigma_{i} & \geq 0, \quad \forall i=1, \ldots, n
\end{aligned}
$$

L\&T, Quadratic Case

- Lasserre \& Thanh's constraints simplify when

$$
\operatorname{deg}(f)=2, d=2, k=1
$$

$f(x)-\left(b+\boldsymbol{a}^{\prime} x+x^{\prime} A x\right)=\sum_{i=1}^{n} \sigma_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)+\left[\begin{array}{ll}x^{\prime} & 1\end{array}\right] C\left[\begin{array}{ll}x^{\prime} & 1\end{array}\right]^{\prime}$

$$
A \geq 0, C \geq 0
$$

$$
\sigma_{i} \geq 0, \quad \forall i=1, \ldots, n
$$

- Note the similarity with α perturbations
\Rightarrow average error better ((\leq) than diagonal $\alpha \mathrm{BB}$ methods

L\&T, Quadratic Case

- Lasserre \& Thanh's constraints simplify when

$$
\operatorname{deg}(f)=2, d=2, k=1
$$

$f(\boldsymbol{x})-\left(b+\mathbf{a}^{\prime} \boldsymbol{x}+\boldsymbol{x}^{\prime} A \boldsymbol{x}\right)=\sum_{i=1}^{n} \sigma_{i}\left(x_{i}-x_{i}^{L}\right)\left(x_{i}^{U}-x_{i}\right)+\left[\begin{array}{ll}\boldsymbol{x}^{\prime} & 1\end{array}\right] C\left[\begin{array}{ll}\boldsymbol{x}^{\prime} & 1\end{array}\right]^{\prime}$

$$
\begin{aligned}
& A \geq 0, \quad C \geq 0 \\
& \sigma_{i} \geq 0, \quad \forall i=1, \ldots, n
\end{aligned}
$$

- Note the similarity with α perturbations
\Rightarrow average error better (\leq) than diagonal $\alpha \mathrm{BB}$ methods
- Nondiagonal $\alpha \mathrm{BB}$ was better on a test suite of 300 generated quadratic functions
\triangleright lower average error in all cases, higher minimum in 279 cases

Properties

- Similar calculation complexity in the quadratic case

Properties

- Similar calculation complexity in the quadratic case
- L\&T
\triangleright better for general polynomials
\triangleright a hierarchy of underestimators
\triangleright attractive theoretical convergence

Properties

- Similar calculation complexity in the quadratic case
- L\&T
- better for general polynomials
\triangleright a hierarchy of underestimators
\triangleright attractive theoretical convergence
$\Rightarrow \alpha \mathrm{BB}$
\triangleright only requires smoothness
\triangleright relatively fast
\triangleright introduces additional (linear) constraints and variables
\triangleright slightly tighter and faster in the quadratic case

Properties

- Similar calculation complexity in the quadratic case
- L\&T
- better for general polynomials
\triangleright a hierarchy of underestimators
\triangleright attractive theoretical convergence
- $\alpha \mathrm{BB}$
\triangleright only requires smoothness
\triangleright relatively fast
\triangleright introduces additional (linear) constraints and variables
\triangleright slightly tighter and faster in the quadratic case
- Conclusion: your best choice is problem-dependent!

References

Claire S. Adjiman, S. Dallwig, Christodoulos A. Floudas, and A. Neumaier.
A global optimization method, $\alpha \mathrm{BB}$, for general twice-differentiable constrained NLPs - I. Theoretical advances.
Computers \& Chemical Engineering, 22(9):1137-1158, 1998.

Jean B. Lasserre and Tung Phan Thanh.
Convex underestimators of polynomials.
Journal of Global Optimization, 2012.

A. Skjäl, T. Westerlund, R. Misener, and Christodoulos A. Floudas.

A generalization of the classical $\alpha \mathrm{BB}$ convex underestimation via diagonal and non-diagonal quadratic terms.
Journal of Optimization Theory and Applications, 154(2):462-490, 2012.

Thank you for listening!

Thank you for listening!

Questions?

L\&T, Function Form

$$
\begin{cases}\max _{h \in \mathbb{R}[\mathbf{x}]_{d}, \sigma_{j}, \theta_{\ell}} & \int{ }_{\mathbf{B}} h d \lambda \\ & f(\mathbf{x})=h(\mathbf{x})+\sum_{j=0}^{n} \sigma_{j}(\mathbf{x}) g_{j}(\mathbf{x}) \quad \forall \mathbf{x} \\ & \\ \text { s.t. } & \mathbf{T} h(\mathbf{x}, \mathbf{y})=\sum_{j=0}^{n} \theta_{j}(\mathbf{x}, \mathbf{y}) g_{j}(\mathbf{x}) \\ & \quad+\theta_{n+1}(\mathbf{x}, \mathbf{y}) g_{n+1}(\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \\ & \\ & \sigma_{0} \in \Sigma[\mathbf{x}]_{k}, \sigma_{j} \in \Sigma[\mathbf{x}]_{k-1}, j \geq 1 \\ & \theta_{0} \in \Sigma[\mathbf{x}, \mathbf{y}]_{k}, \theta_{j} \in \Sigma[\mathbf{x}, \mathbf{y}]_{k-1}, j \geq 1\end{cases}
$$

L\&T, SDP Form

$$
\left\{\begin{array}{lll}
\max _{h \in \mathbb{R}[\mathbf{x}]_{d}, \mathbf{Z}_{j}, \Theta_{\ell}} & \sum_{\alpha \in \mathbb{N}_{d}^{n}} h_{\alpha} \gamma_{\alpha} \\
& f_{\alpha}=h_{\alpha}+\sum_{j=0}^{n}\left\langle\mathbf{Z}^{j}, \mathbf{C}_{\alpha}^{j}\right\rangle, & \forall \alpha \in \mathbb{N}_{2 k}^{n} \\
& \\
\text { s.t. } & (\mathbf{T} h)_{\alpha \beta}=\sum_{\ell=0}^{n+1}\left\langle\Theta_{\ell}, \Delta_{\alpha \beta}^{\ell}\right\rangle, & \forall(\alpha, \beta) \in \mathbb{N}_{2 k}^{2 n} \\
& \mathbf{Z}^{j}, \Theta^{\ell} \succeq 0, \quad j=0, \ldots, n ; \ell=0, \ldots, n+1,
\end{array}\right.
$$

